Python Programming
Unit: 1

Introduction to Python: Python is a popular programming language. It was
created by Guido van Rossum, and released in 1991.

It 1s used for:

« web development (server-side),
« software development,

. mathematics,

« system scripting.

What can Python do?

« Python can be used on a server to create web applications.

« Python can be used alongside software to create workflows.

« Python can connect to database systems. It can also read and modify
files.

o Python can be used to handle big data and perform complex
mathematics.

« Python can be used for rapid prototyping, or for production-ready
software development.

Python Variables: Python Variable 1s containers that store
values. Python is not “statically typed”. We do not need to declare
variables before using them or declare their type. A variable is created
the moment we first assign a value to it. A Python variable is a name
given to a memory location. It is the basic unit of storage in a
program.

An Example of a Variable in Python is a representational name that
serves as a pointer to an object. Once an object is assigned to a
variable, it can be referred to by that name. In layman’s terms, we can
say that Variable in Python is containers that store values.

Example:
Var ="Ram"
print(Var)
Output: Ram

Notes:

The value stored in a variable can be changed during program execution.
A Variables in Python is only a name given to a memory location, all the
operations done on the variable effects that memory location.

Rules for Python variables:

A Python variable name must start with a letter or the underscore
character.

A Python variable name cannot start with a number.

A Python variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and).

Variable in Python names are case-sensitive (name, Name, and NAME
are three different variables).

The reserved words(keywords) in Python cannot be used to name the
variable in Python.

Python basic Operators: In Python programming, Operators in general are

used to perform operations on values and variables. These are standard
symbols used for the purpose of logical and arithmetic operations.

OPERATORS: These are the special symbols. Eg- +, * |/, etc.
OPERAND: It is the value on which the operator is applied.

Types of Operators in Python

Nk =

Arithmetic Operators
Comparison Operators
Logical Operators
Bitwise Operators
Assignment Operators

6. Identity Operators and Membership Operators

1. Arithmetic Operators in Python:
Python Arithmetic operators are used to perform basic mathematical

operations like addition, subtraction, multiplication, and division.

In Python 3.x the result of division is a floating-point while in Python 2.x
division of 2 integers was an integer. To obtain an integer result in Python
3.x floored (// integer) is used.

Operator Description

//

%

kK

Addition: adds two operands

Subtraction: subtracts two operands

Multiplication: multiplies two operands

Division (float): divides the first operand by the second

Division (floor): divides the first operand by the second

Modulus: returns the remainder when the first operand
is divided by the second

Power: Returns first raised to power second

Syntax

X—i—y

x /'y

X%y

Example of Arithmetic Operators in Python

Division Operators

Division Operators allow you to divide two numbers and return a quotient,
1.e., the first number or number at the left is divided by the second number
or number at the right and returns the quotient.

There are two types of division operators:

1. Float division
2. Floor division

1. Float division

The quotient returned by this operator is always a float number, no matter if
two numbers are integers. For example:

python program to demonstrate the use of "/"
print(5/5)

print(10/2)

print(-10/2)

print(20.0/2)

Output:
1.0

5.0
-5.0
10.0

2. Integer division (Floor division)

The quotient returned by this operator is dependent on the argument being
passed. If any of the numbers is float, it returns output in float. It is also
known as Floor division because, if any number is negative, then the output
will be floored. For example:

python program to demonstrate the use of "//"
print(10//3)

print (-5//2)

print (5.0//2)

print (-5.0//2)

Output:
3

-3
2.0
-3.0

Precedence of Arithmetic Operators in Python

The precedence of Arithmetic Operators in python is as follows:

1. P — Parentheses

2. E — Exponentiation

3. M — Multiplication (Multiplication and division have the same
precedence)

4. D — Division

. A — Addition (Addition and subtraction have the same precedence)

W

6. S — Subtraction
The modulus operator helps us extract the last digit/s of a number. For
example:

« X % 10 -> yields the last digit
« x % 100 -> yield last two digits

Arithmetic Operators With Addition, Subtraction, Multiplication,
Modulo and Power

Here is an example showing how different Arithmetic Operators in Python
work:

Examples of Arithmetic Operator

Addition of numbers

add=a+b

Subtraction of numbers

sub=a—->b

Multiplication of number

mul=a*b
Modulo of both number

mod=a%b

Power

p=a**b

print results
print(add)
print(sub)
print(mul)
print(mod)

print(p)

Output:
13

5

36

1
6561

2. Comparison Operators in Python

In Python Comparison of Relational operators compares the values. It either
returns True or False according to the condition.

Operator Description Syntax

Greater than: True if the left operand is greater than the

> >
right Y

< Less than: True if the left operand is less than the right x<y

== Equal to: True if both operands are equal X==y

I= Not equal to — True if operands are not equal x!=y

. Greater than or equal to True if the left operand is .-
greater than or equal to the right y
Less than or equal to True if the left operand is less than

<= X <= y

or equal to the right

= 1s an assignment operator and == comparison operator.
Precedence of Comparison Operators in Python

In python, the comparison operators have lower precedence than the
arithmetic operators. All the operators within comparison operators have
same precedence order.

Example of Comparison Operators in Python

Let’s see an example of Comparison Operators in Python.

Examples of Relational Operators
a=13

b=33

a> Db is False

print(a > b)

#a<bis True

print(a <b)

#a==D>D1s False

print(a ==Db)

#a!=Dbis True

print(a !=Db)

#a>=Db1s False

print(a >=b)

#a<=Db1is True

print(a <=b)

Output
False

True
False
True
False

True

3. Logical Operators in Python

Python Logical operators perform Logical AND, Logical OR, and Logical
NOT operations. It is used to combine conditional statements.

Operator Description Syntax

And Logical AND: True if both the operands are true x andy

Or Logical OR: True if either of the operands is true x ory

Operator Description Syntax

Not Logical NOT: True if the operand is false not x

Precedence of Logical Operators in Python

The precedence of Logical Operators in python is as follows:

1. Logical not

2. logical and

3. logical or

Example of Logical Operators in Python

The following code shows how to implement Logical Operators in Python:

Examples of Logical Operator
a=True

b = False

Print a and b 1s False

print(a and b)

Printa or b is True

print(a or b)

Print not a 1s False

print(not a)

Output

False
True

False

4. Bitwise Operators in Python

Python Bitwise operators act on bits and perform bit-by-bit operations.
These are used to operate on binary numbers.

Operator Description Syntax
& Bitwise AND x&y
| Bitwise OR X|y
~ Bitwise NOT ~X

A Bitwise XOR XNy

Operator Description Syntax

>> Bitwise right shift x>>

<< Bitwise left shift x<<

Precedence of Bitwise Operators in Python

The precedence of Bitwise Operators in python is as follows:

Bitwise NOT

Bitwise Shift

Bitwise AND

Bitwise XOR

5. Bitwise OR

Bitwise Operators in Python

Here is an example showing how Bitwise Operators in Python work:

b=

Examples of Bitwise operators

10

o
Il

b=4

Print bitwise AND operation

print(a & b)

Print bitwise OR operation

print(a | b)

Print bitwise NOT operation

print(~a)

print bitwise XOR operation

print(a * b)

print bitwise right shift operation

print(a >> 2)

print bitwise left shift operation

print(a << 2)

Output
0

14
11
14
2
40

5. Assignment Operators in Python

Operator Description Syntax

Assign the value of the right side of the
expression to the left side operand

Add AND: Add right-side operand with left-side

. +=b a=atb
operand and then assign to left operand a aa

Subtract AND: Subtract right operand from left
-= : a-=b a=a-b
operand and then assign to left operand

Multiply AND: Multiply right operand with left

k— —q%
operand and then assign to left operand a*=b a=a’d

Divide AND: Divide left operand with right
/= . a/=b a=a/b
operand and then assign to left operand

0= Modulus AND: Takes modulus using left and a%=b

right operands and assign the result to left @=a”ob

operand

Divide(floor) AND: Divide left operand with

/= right operand and then assign the value(floor) to a//=b a=a//b
left operand
Exponent AND: Calculate exponent(raise power) JF—h

*k= value using operands and assign value to left D,
operand
Performs Bitwise AND on operands and assign a&=

&:
value to left operand a=a&b
Performs Bitwise OR on operands and assign

= a=b a=ajb
value to left operand

. Performs Bitwise XOR on operands and assign b a=a’b
value to left operand

. Performs Bitwise right shift on operands and a>>=b
assign value to left operand a=a>>b

— Performs Bitwise left shift on operands and a <<=b a=

assign value to left operand

a<<b

Python Assignment operators are used to assign values to the variables.
Assignment Operators in Python
Let’s see an example of Assignment Operators in Python.

Examples of Assignment Operators

a=10

Assign value

Add and assign value
b+=a

print(b)

Subtract and assign value

multiply and assign
b*=a

print(b)

bitwise lishift operator
b<<=a

print(b)

Output

10

20

10

100
102400

Identity Operators in Python

In Python, is and is not are the identity operators both are used to check if
two values are located on the same part of the memory. Two variables that
are equal do not imply that they are identical.

is True if the operands are identical

isnot True if the operands are not identical

Example Identity Operators in Python

Let’s see an example of Identity Operators in Python.

b=20
c=a
print(a is not b)

print(a is ¢)

Output

True

True

Membership Operators in Python

In Python, in and not in are the membership operators that are used to test
whether a value or variable is in a sequence.

in True i1f value is found in the sequence

not in True if value is not found in the sequence

Examples of Membership Operators in Python

The following code shows how to implement Membership Operators in
Python:

Python program to illustrate

not 'in' operator

x =24
y =20

list =[10, 20, 30, 40, 50]

if (x not in list):
print("x is NOT present in given list")
else:

print("x is present in given list")

if (y in list):
print("y is present in given list")
else:
print("y is NOT present in given list")

Output

x 18 NOT present in given list

y 1s present in given list

Ternary Operator in Python

in Python, Ternary operators also known as conditional expressions are
operators that evaluate something based on a condition being true or false. It
was added to Python in version 2.5.

It simply allows testing a condition in a single line replacing the multiline
if-else making the code compact.

Syntax : [on_true] if [expression] else [on_false]

Examples of Ternary Operator in Python

Here is a simple example of Ternary Operator in Python.

Program to demonstrate conditional operator

a,b=10, 20

Copy value of a in min if a <b else copy b

min=aifa<belseb

print(min)

Output:
10

Precedence and Associativity of Operators in Python

In Python, Operator precedence and associativity determine the priorities of
the operator.

Operator Precedence in Python
This is used in an expression with more than one operator with different
precedence to determine which operation to perform first.

Let’s see an example of how Operator Precedence in Python works:

Examples of Operator Precedence

Precedence of '+' & '*'
expr =10+ 20 * 30

print(expr)

Precedence of 'or' & 'and'
name = "Alex"

age=20

if name == "Alex" or name == "John" and age >= 2:
print("Hello! Welcome.")

else:

print("Good Bye!!")

Output
610

Hello! Welcome.

Operator Associativity in Python

If an expression contains two or more operators with the same precedence
then Operator Associativity is used to determine. It can either be Left to
Right or from Right to Left.

The following code shows how Operator Associativity in Python works:

Examples of Operator Associativity

Left-right associativity
#100/10 * 10 1s calculated as
(100 /10) * 10 and not

#as 100/ (10 * 10)

print(100 / 10 * 10)

Left-right associativity
#5 -2+ 3 1is calculated as
#(5-2)+ 3 and not
#as5-(2+3)

print(5 - 2 + 3)

left-right associativity

print(5 - (2 + 3))

right-left associativity

2 ** 3 *% 2 is calculated as
#2 %% (3 ** 2) and not
#as (2 **3)**2

print(2 ** 3 ** 2)

Output

100.0
6

512

Understanding python blocks: A block in Python refers to a piece of code
that performs a specific task. It can contain one or more statements and is
defined by its indentation. Blocks are used to group statements together and
provide structure to a program.

A block in Python is a group of one or more statements that perform a
specific task. Blocks are defined by their indentation, which provides
structure to the program. Indentation in Python is important as it defines the
scope of a block and helps to keep the code organized.

For example, consider the following code:

if x> 0:

print("x is positive")

x=x+1
In this code, the block is defined by the indentation of the two statements
under the if clause. The block starts with the line print("x is positive") and

ends with the line x = x + 1. The statements within the block will only be
executed if the condition specified in the if clause is met.

Similarly, consider the following code:

for 1 in range(10):

print(1)

In this code, the block is defined by the indentation of the statement under
the for clause. The block starts with the line print(i) and is executed once for
cach iteration of the loop.

It’s important to note that blocks in Python can be nested, meaning that a
block can contain one or more blocks within it. This allows for the creation of
complex programs that can perform a variety of tasks.

Blocks in Python are essential to understand as they provide structure and
organization to programs. By grouping related statements together, blocks
make code easier to read and maintain.

Python Data Types: Data types are the classification or categorization of
data items. It represents the kind of value that tells what operations can be
performed on a particular data. Since everything is an object in Python
programming, data types are actually classes and variables are instances
(object) of these classes.

The following is a list of the Python-defined data types.

. Numbers
. Sequence Type

. Set

1
2
3. Boolean
4
5. Dictionary

PRI R DD =

Numeric

Interger

Complex

Number

Dictionary

Float

Python -

Boolean

Data Types

Set

Sequence

Numbers

Numeric values are stored in numbers. The whole number, float, and
complex qualities have a place with a Python Numbers datatype. Python
offers the type() function to determine a variable's data type. The instance ()
capability is utilized to check whether an item has a place with a specific

class.

When a number is assigned to a variable, Python generates Number objects.

For instance,

a=>5
print("The type of a", type(a))

b=40.5
print("The type of b", type(b))

c=1+3;
print("The type of c", type(c))

Type

Strings

List

Tuple

9. print(" c is a complex number", isinstance(1+3j,complex))

Output:

The type of a <class 'int™>

The type of b <class 'float™>
The type of ¢ <class 'complex'>
c is complex number: True

Python supports three kinds of numerical data.

O

Int: Whole number worth can be any length, like numbers 10, 2, 29, -
20, - 150, and so on. An integer can be any length you want in Python.
Its worth has a place with int.

Float: Float stores drifting point numbers like 1.9, 9.902, 15.2, etc. It
can be accurate to within 15 decimal places.

Complex: An intricate number contains an arranged pair, i.e., X + 1y,
where x and y signify the genuine and non-existent parts separately.
The complex numbers like 2.144, 2.0 + 2.3j, etc.

Sequence Type

String

The sequence of characters in the quotation marks can be used to
describe the string. A string can be defined in Python using single,
double, or triple quotes.

String dealing with Python is a direct undertaking since Python gives
worked-in capabilities and administrators to perform tasks in the string.
When dealing with strings, the operation "hello"+" python" returns
"hello python," and the operator + is used to combine two strings.
Because the operation "Python" *2 returns "Python," the operator * is
referred to as a repetition operator.

The Python string 1s demonstrated in the following example.

Example - 1

1. str="string using double quotes"

A e

bk wbn

print(str)

s =""A multiline
string"'

print(s)

Output:

string using double quotes
A multiline
string

Look at the following illustration of string handling.
Example - 2

strl = 'hello world' #string strl

str2 ="' how are you' #string str2

print (str1[0:2]) #printing first two character using slice operator
print (str1[4]) #printing 4th character of the string

print (str1*2) #printing the string twice

print (strl + str2) #printing the concatenation of strl and str2

Output:

he

0

hello worldhello world
hello world how are you

List

.
.
.
.
.

9.

Lists in Python are like arrays in C, but lists can contain data of different
types. The things put away in the rundown are isolated with a comma (,) and
encased inside square sections [].

To gain access to the list's data, we can use slice [:] operators. Like how they
worked with strings, the list is handled by the concatenation operator (+) and
the repetition operator (*).

Look at the following example.
Example:

listl] =[1, "hi", "Python", 2]
#Checking type of given list
print(type(listl))

#Printing the list1
print (listl)

List slicing
print (list1[3:])

List slicing
print (list1[0:2])

List Concatenation using + operator
print (listl + listl)

List repetation using * operator
print (listl * 3)

Output:

[1, 'hi', 'Python’, 2]

[2]

[1, 'hi']

[1, 'hi', 'Python’, 2, 1, 'hi", Python', 2]

.

1
2
3
4.
5.
6.
7.
8.

9.

[1, 'hi', 'Python', 2, 1, 'hi", 'Python’, 2, 1, 'hi", 'Python’, 2]

Tuple

In many ways, a tuple is like a list. Tuples, like lists, also contain a collection
of items from various data types. A parenthetical space () separates the tuple's
components from one another.

Because we cannot alter the size or value of the items in a tuple, it is a read-
only data structure.

Let's look at a straightforward tuple in action.
Example:

tup = ("hi", "Python", 2)
Checking type of tup
print (type(tup))

#Printing the tuple
print (tup)

Tuple slicing

print (tup[1:])
print (tup[0:1])

Tuple concatenation using + operator
print (tup + tup)

Tuple repatation using * operator
print (tup * 3)

Adding value to tup. It will throw an error.
t[2] = "hi"

Output:

<class 'tuple™

(‘ht', 'Python', 2)

('Python', 2)

(‘ht’,)

('ht', "Python', 2, 'hi', 'Python', 2)

('ht', 'Python', 2, 'hi', 'Python', 2, 'hi', 'Python', 2)

Traceback (most recent call last):
File "main.py", line 14, in <module>
t[2] = "hi";
TypeError: 'tuple' object does not support item assignment

Dictionary

A dictionary is a key-value pair set arranged in any order. It stores a specific
value for each key, like an associative array or a hash table. Value is any
Python object, while the key can hold any primitive data type.

The comma (,) and the curly braces are used to separate the items in the
dictionary.

Look at the following example.

. d={1:"Jimmy', 2:'Alex', 3:'john’, 4:'mike'}

. # Printing dictionary
. print (d)

. # Accesing value using keys
. print("1st name is "+d[1])
. print("2nd name 1s "+ d[4])

— 0 00 NN AW~

0. print (d.keys())

11.

b s

print (d.values())
Output:

st name is Jimmy

2nd name is mike

{1: Jimmy', 2: 'Alex', 3: 'john’, 4: 'mike'}
dict keys([1, 2, 3, 4])

dict values(['Jimmy', 'Alex', 'john', 'mike'])

Boolean

True and False are the two default values for the Boolean type. These
qualities are utilized to decide the given assertion valid or misleading. The
class book indicates this. False can be represented by the 0 or the letter "F,"
while true can be represented by any value that is not zero.

Look at the following example.

Python program to check the boolean type
print(type(True))

print(type(False))

print(false)

Output:

<class 'bool™>
<class 'bool™>
NameError: name 'false' 1s not defined

9.

Set

The data type's unordered collection is Python Set. It is iterable, mutable(can
change after creation), and has remarkable components. The elements of a set
have no set order; It might return the element's altered sequence. Either a
sequence of elements is passed through the curly braces and separated by a
comma to create the set or the built-in function set() is used to create the set.
[t can contain different kinds of values.

Look at the following example.

Creating Empty set
setl = set()

set2 = {'James', 2, 3,'Python'}

#Printing Set value
print(set2)

Adding element to the set

set2.add(10)
print(set2)

#Removing element from the set
set2.remove(2)
print(set2)

Output:
{3, 'Python', 'James', 2}

{'Python', 'James', 3, 2, 10}
{'Python', 'James', 3, 10}

